nav bg

연구데이터 > 검색

[논문] Bottlenose dolphin identification using synthetic image-based transfer learning

메타 데이터

세부정보 닫기열기
세부과제책임자

김창수

논문제목(Title)

[논문] Bottlenose dolphin identification using synthetic image-based transfer learning

학술지명(Journal)

Ecological Informatics

ImpactFactor

5.9

ISSN_ISBN

1574-9541

학술지볼륨권호(Volume)

84

SCI구분

SCIE

초록(Abstract)

The Indo-Pacific bottlenose dolphin (IPBD) (Tursiops aduncus) is a key species in marine ecosystems. Photo identification (photo-ID) is a fundamental method for studying dolphin populations by identifying individuals based on the unique features of their dorsal fins. Despite recent developments in learning-based photo-ID algorithms, the lack of training data for these models has become a bottleneck for improving the accuracy of these algorithms. In this study, we used synthetic image generation and deep learning to improve photography-based IPBD identification. We generated 7500 synthetic dorsal fin images of 30 dolphins and trained a custom triplet neural network using ResNet50 to distinguish individuals. The model achieved 84.8 % accuracy within the top 10-ranked positions and 72.2 % accuracy in the top 5-ranked positions, demonstrating the potential of these technologies to enhance IPBD monitoring and conservation efforts.

저자명(Author)

Changsoo Kim*, Byung-Yeob Kim, Dong-Guk Paeng*

학술지출판일자(PublicationDate)

2024.12.

DMP

과제명(영문)

Spatio-temporal distribution of habitat usage for Jeju Indo-Pacific Bottlenose dolphins

연구책임자 / 소속

김창수 / 기초과학연구소

당해연구기간

2023.03.01-2024.02.29

공개 및 라이선스

공개 일자

2024-11-27

라이선스

저작자표시-비영리

저작권

이 데이터의 저작권은 <연구자 기관/그룹/사용자>에게 있습니다.

  • 111views
  • 0downloads
컬렉션
[김창수] 제주 남방큰돌고래 서식지 이용 시간적/공간적 분포 모니터링 (2023)
제출자
관리자
공개일자
2024-11-27
Versions
  • Version 1 2024-11-27
Cite as
Changsoo Kim*, Byung-Yeob Kim, Dong-Guk Paeng*, 2024.12., [논문] Bottlenose dolphin identification using synthetic image-based transfer learning
Export