nav bg

연구데이터 > 검색

[논문] Linear Maps that Preserve Any Two Term Ranks on Matrix Spaces over Anti-Negative Semirings

메타 데이터

세부정보 닫기열기
세부과제책임자

송석준

논문제목(Title)

[논문] Linear Maps that Preserve Any Two Term Ranks on Matrix Spaces over Anti-Negative Semirings

학술지명(Journal)

Mathematics

ImpactFactor

1.747

ISSN_ISBN

EISSN: 2227-7390

학술지볼륨권호(Volume)

8(1)

SCI구분

SCIE

초록(Abstract)

There are many characterizations of linear operators from various matrix spaces into themselves which preserve term rank. In this research, we characterize the linear maps which preserve any two term ranks between different matrix spaces over anti-negative semirings, which extends the previous results on characterizations of linear operators from some matrix spaces into themselves. That is, a linear map T from 𝑝×𝑞 matrix spaces into 𝑚×𝑛 matrix spaces preserves any two term ranks if and only if T preserves all term ranks if and only if T is a (𝑃,𝑄,𝐵)-block map.

Keywords: matrix space; anti-negative semiring; term rank; linear map; (P, Q, B)-block map

저자명(Author)

Kang, Kyung Tae; Song, Seok-Zun; Jun, Young Bae;

학술지출판일자(PublicationDate)

2020-01-01

공개 및 라이선스

공개 일자

2022-03-17

라이선스

저작자표시-비영리

저작권

이 데이터의 저작권은 <연구자 기관/그룹/사용자>에게 있습니다.

  • 10189views
  • 45downloads
컬렉션
[송석준] 서로 다른 행렬 공간상의 퍼지 항 계수와 그 보존자 연구(2019-2020)
제출자
관리자
공개일자
2022-03-17
Versions
  • Version 1 2022-03-17
Cite as
Kang, Kyung Tae; Song, Seok-Zun; Jun, Young Bae;, 2020-01-01, [논문] Linear Maps that Preserve Any Two Term Ranks on Matrix Spaces over Anti-Negative Semirings
Export